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Abstract We solve the Schrödinger equation with the Morse potential energy model
in D spatial dimensions. The bound state rotation–vibrational energy spectra have
been obtained by using the supersymmetric shape invariance approach. For a fixed
vibrational quantum number and various rotational quantum numbers, the energies
for the X1�+ state of ScI molecule increase as D increases. We observe that the
behavior of the vibrational energies in higher dimensions remains similar to that of
the three-dimensional system. The dimensional scaling method resembles a translation
transformation from the higher dimensions to the actual three dimensions.

Keywords Schrödinger equation · Morse potential energy model ·
Rotation–vibrational energy · Arbitrary spatial dimensionality · Scandium monoiodide

1 Introduction

Generalizing the Schrödinger equation to an arbitrary spatial dimensionality D has
received much attention in chemical physics [1,2]. Louck [3–5] presented detailed
derivations for the generalized orbit angular momentum, which are involved in almost
all works about higher dimensional wave equations. The dimensional scaling (D-
scaling) method involves generalizing the three-dimensional Schrödinger equation
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to D-dimensional space and treating D as a free parameter. The D-scaling method
employed in chemical physics today was developed by Herchbach and collaborators
[6]. Svidzinsky et al. [7,8] constructed the connection between the classical Bohr
quantum mechanical model and the D-scaling model. Serra and Kais [9–12] found
that the symmetry breaking of the electronic structure configurations in the large-D
limit is completely analogous to the standard phase transitions and critical phenom-
ena in statistical mechanics. With the help of the D-scaling approach, Ferrón et al.
[13] investigated stability of two particles in a dipole field. Zhao et al. [14] studied
the electron correlation of anisotropic quantum dots in the high-density limit in terms
of the D-scaling method. Chen et al. [15] investigated mathematical analysis of the
D-scaling method for solving the Schrödinger equation with the Coulomb potentials.
A reverse strategy for large-D expansion approach is the program of solving directly
the D-dimensional Schrödinger equation. Many efforts have been made to obtain
bound state solutions of the D-dimensional Schrödinger equations with typical poten-
tial energy models [16–26], which include some diatomic molecule potentials, such as
the Morse potential [19], Mie-type potential [20], Schiöberg potential [21], Manning-
Rosen potential [22–25], and Pöschl-Teller potential [26]. However, the authors in
these works did not report the quantitative investigation on rotation–vibrational ener-
gies of real diatomic molecules in higher dimensions. Recently, Hu et al. [27,28]
investigated the D-dimensional Schrödinger equations with the improved Manning-
Rosen potential and improved Rosen-Morse potential. They observed that the change
behavior of the vibrational energies in higher dimensions remains similar to that of
the three-dimensional system for the a3�+

u state of 7Li2 molecule, 33�+
g state of Cs2

molecule and 51�g state of Na2 molecule. The present main topic is to examine this
phenomenon for other diatomic molecule systems.

In 1929, Morse [29] proposed a three-parameter potential energy function for
diatomic molecules,

UM (r) = De

(
1 − e−α(r−re)

)2
, (1)

where De is the dissociation energy, re is the equilibrium bond length, and α denotes
the range of the potential. The Morse potential has been widely used in describing
diatomic vibrations [30–35]. In terms of the Pekeris approximation method [36], some
authors [37–44] dealt with the centrifugal term of the three-dimensional Schrödinger
equation with the Morse potential and other diatomic molecule potentials. Bound state
solutions of the three-dimensional Schrödinger equation for the Morse potential have
been studied by a number of methods, such as the exact quantization rule method
[37], supersymmetric shape invariance approach [38], Nikiforov–Uvarov method
[39], asymptotic iteration approach [40], and two-point quasi-rational approxima-
tion technique [41]. Miraboutalebi et al. [19] investigated analytical solutions of the
N -dimensional Schrödinger equation with the Morse potential based on the Laplace
transformation method. By employing the Pekeris approximation approach to deal
with the centrifugal term, Jia and Cao [45] studied the bound state solutions of the
three-dimensional Klein-Gordon equation for the Morse potential, and calculated the
relativistic vibrational transition frequencies for the X1�+ state of ScI molecule. The
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scandium monoiodide molecule is of particular interest because they can be used as
prototype for understanding chemical bonding involving d electron. The vibrational
and rotational spectra have received much attention [46–49]. A successful empirical
potential function should reproduce the experimental Rydberg–Klein–Rees (RKR)
[50–52] potential, and satisfy the Lippincott criterion, i.e., an average absolute devia-
tion of less than 1 % of the dissociation energy, De [30]. The average deviation σav is
expressed as a percent of De, σav = 100

∑ (∣∣Uexp (r) − Ucalc (r)
∣∣)/Np De, where Np

is the number of reported points, Uexp (r) and Ucalc (r) are the experimentally deter-
mined potential and the empirical potential, respectively. The Lippincott criterion has
been used by many authors to assess the accuracy of an empirical potential model
[32,53]. The average absolute deviation of the Morse potential for the X1�+ state of
ScI molecule from the RKR potential reported by Reddy et al. [46] is 0.0344 % of
De [45]. This average absolute deviation satisfies the Lippincott criterion. The Morse
potential is available in yielding the potential energy curve of the X1�+ state of ScI
molecule.

In this work, we investigate the bound state solutions of the D-dimensional
Schrödinger equation with the Morse potential model. We attempt to explore the prop-
erties of the rotation–vibrational energy spectra for the X1�+ state of ScI molecule
in higher dimensions.

2 Bound state solutions

The radial part of the D-dimensional Schrödinger equation with a spherical symmetric
potential U (r) for a diatomic molecule with reduced mass μ is given by [1,2]

[
− h̄2

2μ

1

r D−1

∂

∂r

(
r D−1 ∂

∂r

)
+ U (r) + h̄2 J (J +D − 2)

2μr2

]
Rv J (r) = E D

v J Rv J (r),

(2)

where D is a positive integer and D ≥ 2, h̄ denotes the reduced Planck constant, E D
v J

is the rotation–vibrational energy of the diatomic molecule system, v and J denote
the vibrational and rotational quantum numbers, respectively. By a transformation of

Rv J (r) = r− D−1
2 uv J (r), we can write Eq. (2) in the form

− h̄2

2μ

d2uv J (r)

dr2 +
[

U (r) + K (K + 1) h̄2

2μr2

]
uv J (r) = E D

v J uv J (r), (3)

where K = J + 1
2 (D − 3). Taking the spherical symmetric potential U (r) as the

Morse potential model (1), we obtain

− h̄2

2μ

d2uv J (r)

dr2 +
[

De

(
1 − e−α(r−re)

)2+ K (K +1) h̄2

2μr2

]
uv J (r) = E D

v J uv J (r).

(4)
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Equation (4) can be solved exactly only for the case of K = 0. When K �= 0, one can
only solve approximately Eq. (4). We take the Pekeris approximation scheme to deal
with the centrifugal term [36]. The centrifugal potential is approximately replaced by
the following expression [45]

K (K + 1) h̄2

2μr2 = K (K + 1) h̄2

2μr2
e

(
d0+d1e−αr + d2e−2αr

)
, (5)

where the coefficients d0, d1, and d2 are given by [45]

d0 = 1 − 3

αre
+ 3

α2r2
e
, (6)

d1 = 2eαre

(
2

αre
− 3

α2r2
e

)
, (7)

d2 = e2αre

(
3

α2r2
e

− 1

αre

)
. (8)

Substituting expression (5) into Eq. (4) yields the following equation

− d2uv J (r)

dr2 +
(

Ae−αr + Be−2αr
)

uv J (r) = εv J uv J (r) , (9)

where A, B, and εv J are defined as

A = −4μDe

h̄2 eαre + K (K + 1)

r2
e

d1, (10)

B = 2μDe

h̄2 e2αre + K (K + 1)

r2
e

d2, (11)

εv J = 2μ

h̄2

(
E D

v J − De − K (K + 1) h̄2

2μr2
e

d0

)
. (12)

We solve Eq. (9) in terms of the supersymmetric shape invariance approach [54–56].
The ground-state wave function u0,J (r) is written in the form of

u0,J (r) = exp

(
−

∫
W (r) dr

)
, (13)

where W (r) is called a superpotential in supersymmetric quantum mechanics [54].
Substituting Eq. (13) into Eq. (9) leads us to have the following equation satisfied by
the superpotential W (r),

W 2 (r) − dW (r)

dr
= Ae−αr + Be−2αr − ε0,J , (14)
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where ε0,J presents the ground-state energy. The superpotential W (r) is written as
follows

W (r) = C1e−αr + C2, (15)

where C1 and C2 are two constants. With the help of the superpotential function (16),
we yield a pair of supersymmetric partner potentials U− (r) and U+ (r),

U− (r) = W 2 (r) − dW (r)

dr2 = C2
2 + (2C1C2 + αC1) e−αr + C2

1 e−2αr , (16)

U+ (r) = W 2 (r) + dW (r)

dr2 = C2
2 + (2C1C2 − αC1) e−αr + C2

1 e−2αr , (17)

From supersymmetric partner potential expressions (16) and (17), we have the fol-
lowing relationship

U+ (r, a0) = U− (r, a1) + R (a1) , (18)

where a0 = C2, a1 is a function of a0, i.e., a1 = h (a0) = a0 − α, and the reminder
R (a1) is independent of r, R (a1) = a2

0 − a2
1 . Equation (18) tells us that the partner

potentials U− (r) and U+ (r) are shape invariant potentials [55]. Making a comparison
of Eq. (16) with Eq. (9), we have the following three relationships

C2
2 = −ε0,J , (19)

2C1C2 + αC1 = A, (20)

C2
1 = B. (21)

Substituting expression (15) into expression (13) leads us to rewrite the ground-state
wave function u0,J (r) as follows

u0,J (r) = e−C2r e
C1
α

e−αr
. (22)

We consider the bound state solutions, which demand the wave function uv J (r) to
satisfy the boundary conditions: uv J (0) = uv J (∞) = 0. These regularity conditions
leads us to have C2 > 0 and C1 < 0. In terms of these restriction conditions, we
obtain by solving Eqs. (20) and (21),

C1 = −√
B, (23)

C2 = A

2C1
− α

2
. (24)

In terms of the shape invariance approach [55], the energy spectra of the shape invariant
potential U− (r) are given exactly by

ε
(−)
0,J = 0, (25)
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ε
(−)
v J =

v∑
k=1

R (ak) = R (a1) + R (a2) + · · · + R (av)

= a2
0 − a2

1 + a2
1 − a2

2 + · · · + a2
v−1 − a2

v = a2
0 − a2

v = C2
2 − (C2 − vα)2 ,

(26)

where the quantum number v = 0, 1, 2, . . .. From Eqs. (9), (14) and (16), we have the
following relationship for εv J ,

εv J = ε
(−)
v J + ε0,J . (27)

Substituting Eqs. (19) and (26) into Eq. (27) and using expression (24), we obtain

εv J = −
(

A

2C1
− α

2
− vα

)2

. (28)

Substituting expression (23) into expression (28) and employing expressions (10)–
(12), we obtain the rotation–vibrational energy spectra for the diatomic molecule
presented by the Morse potential energy model in higher dimensions,

E D
v J = De + K (K + 1) h̄2

2μr2
e

d0

− h̄2

2μ

⎛
⎜⎜⎝

2μ

h̄2

(
2Deeαre − K (K+1)h̄2

2μr2
e

d1

)

2
(

2μ

h̄2 Dee2αre + K (K+1)

r2
e

d2

) 1
2

−
(

v + 1

2

)
α

⎞
⎟⎟⎠

2

. (29)

In terms of the superpotential W (r) given in expression (15) and the ground-
state wave function u0,J (r) given in expression (22), we can yield the excited state
wave functions by employing the explicit recursion operator approach [57,58]. The
unnormalized wave functions are given by [57]

uv+1,J (r, a0) = A+ (r, a0) uv,J (r, a1), (30)

where the operator A+ (r, a0) is given by [57]

A+ (r, a0) = − d

dr
+ W (r, a0). (31)

Considering a0 = C2 and a1 = a0 − α = C2 − α, and using expressions (15) and
(22), we obtain the following expression from recursion relation (30),
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u1,J (r) =
(

− d

dr
+ C1e−αr + C2

)
e−(C2−α)r e

C1
α

e−αr

= (
2C2 − α + 2C1e−αr ) e−(C2−α)r e

C1
α

e−αr
. (32)

From expressions (8), (11) and (23), we have

C1 = −eαre

re

√
2μr2

e De

h̄2 + K (K + 1)

(
3

α2r2
e

− 1

αre

)
. (33)

With the help of expressions (7), (10), (24) and (33), we obtain

C2 =
4μr2

e De

h̄2 − K (K + 1)
(

4
αre

− 6
α2r2

e

)

2re

√
2μr2

e De

h̄2 + K (K + 1)
(

3
α2r2

e
− 1

αre

) − α

2
. (34)

Substituting expressions (33) and (34) into expression (32) lead us to obtain the fol-
lowing expression for the first excited state wave function under the replacements of
α → α

re
and r → re (r + 1),

u1,J (r) = α

re
e− α

2 (kN −3)

(
kN − 2 − 2ηN

α
e−αr

)
e− α

2 (kN −3)r e− ηN
α

e−αr
, (35)

where kN = 2ξ2
N

αηN
, ηN and ξN are defined by expression (28) of Ref. [19]. Employing

the same procedure, one can produce the other excited state wave functions.
From expression (31) of Ref. [19], we obtain the first excited state wave function,

Rλ,1 (r) = N1

(
2ηN

α

) α
2 (kN −3) (

kN − 2 − 2ηN

α
e−αr

)
e− α

2 (kN −3)r e− ηN
α

e−αr
. (36)

Except the normalization constant, expression (35) is the same with expression (36).
They give the same unnormalized wave function.

3 Discussion

The equilibrium force constant ke is defined as the second derivates of the potential
energy function U (r) for diatomic molecules,

d2U (r)

dr2

∣∣∣∣
r=re

= ke = μω2
e , (37)

where ωe denotes the equilibrium harmonic vibrational frequency. Employing the
above definition, we obtain the expression for the parameter α in the Morse potential

model, α =
√

ke
2De

.
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When D = 3, the rotation–vibrational energy spectrum expression (29) becomes
the following form

E D
v J = De + J (J + 1) h̄2

2μr2
e

d0 − h̄2

2μ

⎛
⎜⎜⎝

2μ

h̄2

(
2Deeαre − J (J+1)h̄2

2μr2
e

d1

)

2
(

2μ

h̄2 Dee2αre + J (J+1)

r2
e

d2

) 1
2

−
(

v + 1

2

)
α

⎞
⎟⎟⎠

2

,

(38)

which presents rotation–vibrational energy levels of the diatomic molecule in the
presence of the Morse potential energy model in three spatial dimensions. Rotation–
vibrational energy expression (38) is in consistent with that given in Eq. (27) of Ref.
[40]. Bayrak and Boztosun [40] solved the three-dimensional Schrödinger equation
with the Morse potential by employing the asymptotic iteration method.

In the special case of D = 3 and J = 0, the rotation–vibrational energy spectrum
expression (29) can be deduced to the following form

E D
v J =

(
v + 1

2

)
h̄ωe −

(
v + 1

2

)2 h̄2ω2
e

4De
, (39)

where we have used the relationship of α =
√

μω2
e

2De
. Expression (39) coincides with

expression (13) of Ref. [29].
In view of K = J + 1

2 (D − 3) = J −1+ 1
2 (D + 2 − 3), we obatin E D

v J = E D+2
v,J−1

from expression (38). This shows that an isomorphism exists for the Mors potential
in D dimensions between spatial dimension and orbital angular momentum, i.e., the
rotation–vibrational energy keeps invariant for a molecule presented by the Morse
potential model under a transformation of an increase in the spatial dimension by two
(D → D +2) and a decrease the orbital angular momentum by one (J → J −1). For
this molecular system presented by the Morse potential, the states connected by the
dimensional link in Eq. (38) are exactly degenerate. This is so-called inter-dimensional
degeneracy symmetry as discussed in literature [59,60].

We consider the X1�+ state of ScI molecule. The molecular constants for this
molecular state are taken from the literature [46]:De = 2.858 eV, re = 2.6078 Å, and
ωe = 277.18 cm−1. Taking these experimental values as inputs, we can determine the

value of the potential parameter α in terms of α = ωe

√
μ

2De
.

In Fig. 1, we plot the rotation–vibrational energy versus the spatial dimension D.
From Fig. 1, we observe that for fixed v and various J , the energies for the X1�+
state of ScI molecule diverge as D increases.

In Fig. 2, we plot the pure vibrational energy versus the vibrational quantum num-
bers v. The experimental data [46] determined by using the RKR method for the X1�+
state of ScI molecule in three-dimension case are also depicted. We find that the dif-
ference between the two adjoint states increases as D increases. The results presented
in Fig. 2 reveal that the behavior of the vibrational energies for the X1�+ state of
ScI molecule in higher dimensions remains similar to that of the three-dimensional
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Fig. 1 (Color online) Energy
for the X1�+ state of ScI
molecule versus D for v = 1, 2
and various J

Fig. 2 (Color online) Energy
for the X1�+ state of ScI
molecule versus v for J = 0 and
various D

system. This phenomena provides an explanation for the physical foundations of the
D-scaling method, namely that the D-scaling approach resembles a translation trans-
formation from the higher dimensions to the actual three dimensions. In Figs. 1 and
2, we do not consider the case D = 2. The reason is that there is a singular point at
this point as addressed in [2].
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4 Conclusions

In this work, we have studied the bound state solutions of the Schrödinger equation
with the Morse potential energy model in D dimensions. By employing the Pekeris
approximation method to deal with the centrifugal term, we obtain analytically the
rotation–vibrational energy spectra of the diatomic molecule presented by the Morse
potential model in terms of the supersymmetric shape invariance approach. For the
X1�+ state of ScI molecule, we observe that for a fixed v and various J the rotation–
vibrational energies diverge as D increases, and also observe that the behavior of
the vibrational energies in higher dimensions remains similar to that of the three-
dimensional system. For the special case D = 3, the present results agree well with
those obtained by other methods.
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